WARNING: This website is obsolete! Please follow this link to get to the new Einstein@Home website!
The Einstein@Home Arecibo Radio Pulsar search: Topic 6 |
|
How does this project help searching for Gravitational Waves? |
[previous] [home] [next] |
||||
When matter accelerates through space, it changes the curvature of spacetime. These changes propagate through space at the speed of light in form of gravitational waves. The more compact and massive the matter is and the more it accelerates, the more intense are the gravitational waves that are emitted. Therefore, close binary systems with compact components like neutron stars and/or black holes are a strong, continuous source for gravitational waves. With the results from this pulsar search, we improve our understanding of how many binaries with neutron stars may be out there in total. Moreover, we get a set of pulsar binaries with known sky positions and orbital parameters. Pulsars can emit gravitational waves by a variety of mechanisms in the sensitive frequency range of ground-based detectors.The results from the radio pulsar search enable us to carry out so-called "targeted searches" for gravitational waves from binary pulsars in data of the LIGO, VIRGO, or GEO 600 gravitational wave observatories. Furthermore, these new pulsars can serve as calibration sources for the gravitational wave space observatory LISA which should be launched by the end of this decade. Here, the gravitational waves emitted from the orbital motion in the mHz range would be detectable.
Gravitational Wave Observatories |
|
Last updated on 10 June 2009